Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Hum Vaccin Immunother ; 19(1): 2195333, 2023 Dec 31.
Article in English | MEDLINE | ID: covidwho-2256307
2.
Clin Infect Dis ; 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2245205

ABSTRACT

BACKGROUND: The reactogenicity and immunogenicity of Coronavirus 2019 (COVID-19) vaccines is well-studied. Little is known regarding the relationship between immunogenicity and reactogenicity of COVID-19 vaccines. METHODS: This study assessed the association between immunogenicity and reactogenicity after two mRNA-1273 (100 µg) injections in 1671 total adolescent and adult participants (≥12 years) from the primary immunogenicity sets of the blinded periods of the Coronavirus Efficacy (COVE) and TeenCOVE trials. Associations between immunogenicity through day 57 and solicited ARs after the first and second injections of mRNA-1273 were evaluated among participants with and without solicited ARs using linear mixed-effects models. RESULTS: The mRNA-1273 reactogenicity in this combined analysis set was similar to that reported for these trials. The vaccine elicited high neutralizing antibody (nAb) geometric mean titers (GMTs) in evaluable participants. GMTs at day 57 were significantly higher in participants who experienced solicited systemic ARs after the second injection (1227.2 [1164.4-1293.5]) than those who did not (980.1 [886.8-1083.2], p = 0.001) and were associated with fever, chills, headache, fatigue, myalgia, and arthralgia. Significant associations with local ARs were not found. CONCLUSIONS: These data show an association of systemic ARs with increased nAb titers following a second mRNA-1273 injection. While these data indicate systemic ARs are associated with increased antibody titers, high nAb titers were observed in participants after both injections, consistent with the immunogenicity and efficacy in these trials. These results add to the body of evidence regarding the relationship of immunogenicity and reactogenicity and can contribute toward the design of future mRNA vaccines.

3.
Hum Vaccin Immunother ; 19(1): 2153532, 2023 12 31.
Article in English | MEDLINE | ID: covidwho-2187760

ABSTRACT

Messenger RNA (mRNA)-based vaccine platforms used for the development of mRNA-1273 and BNT162b2 have provided a robust adaptable approach to offer protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, as variants of concern (VoCs), such as omicron and associated sub-variants, emerge, boosting strategies must also adapt to keep pace with the changing landscape. Heterologous vaccination regimens involving the administration of booster vaccines different than the primary vaccination series offer a practical, effective, and safe approach to continue to reduce the global burden of coronavirus disease 2019 (COVID-19). To understand the immunogenicity, effectiveness, and safety of heterologous mRNA-based vaccination strategies, relevant clinical and real-world observational studies were identified and summarized. Overall, heterologous boosting strategies with mRNA-based vaccines that are currently available and those in development will play an important global role in protecting individuals from COVID-19 caused by emerging VoCs.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , BNT162 Vaccine , SARS-CoV-2 , RNA, Messenger , Antibodies, Viral , Antibodies, Neutralizing
4.
J Family Med Prim Care ; 11(8): 4483-4487, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2201903

ABSTRACT

Introduction: Healthcare workers (HCWs) are at increased risk of acquiring the COVID-19 disease, if there is a breach in the personal protection while managing patients. Objectives: 1. To estimate the pattern of risk exposure among healthcare workers exposed to confirmed cases of COVID-19 working in non-COVID zones of a Teaching Hospital, North-East India. 2. To determine the association between pattern of exposure with their COVID-19 status. Materials and Method: This was a hospital-based cross-sectional study conducted among all HCWs who had occupational exposure to laboratory confirmed COVID-19 cases between July and September 2020 in-non COVID zones of a major tertiary care hospital in Tripura. Results: The present study showed that 215 HCWs were exposed to confirmed cases of COVID-19 while working in non-COVID zones of the hospital. Among the exposed, 39.5% of HCWs had high-risk exposure and 8.8% of HCWs were detected as COVID-19 positive. A majority of the study subjects experienced exposure in the hospital wards (66.0%), in surgical departments (19.5%), had close contact (less than one meter distance) with positive COVID-19 cases (73.5%), and had an exposure of more than 15 minutes (51.2%). The COVID status of the exposed HCWs was significantly associated with no source control (P = 0.016), close contact with COVID-19 positive cases (P = 0.026), more duration of exposure (P < 0.05), use of any PPE (P = 0.000). COVID status was also significantly associated with the high-risk exposure of the participants (P = 0.000). Conclusion: Strict enforcement of the infection control measures like universal precautions should be practiced by HCWs to prevent hospital-acquired infections.

6.
N Engl J Med ; 387(18): 1673-1687, 2022 11 03.
Article in English | MEDLINE | ID: covidwho-2077202

ABSTRACT

BACKGROUND: The safety, reactogenicity, immunogenicity, and efficacy of the mRNA-1273 coronavirus disease 2019 (Covid-19) vaccine in young children are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled evaluation of the selected dose. In part 2, we randomly assigned young children (6 months to 5 years of age) in a 3:1 ratio to receive two 25-µg injections of mRNA-1273 or placebo, administered 28 days apart. The primary objectives were to evaluate the safety and reactogenicity of the vaccine and to determine whether the immune response in these children was noninferior to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives were to determine the incidences of Covid-19 and severe acute respiratory syndrome coronavirus 2 infection after administration of mRNA-1273 or placebo. RESULTS: On the basis of safety and immunogenicity results in part 1 of the trial, the 25-µg dose was evaluated in part 2. In part 2, 3040 children 2 to 5 years of age and 1762 children 6 to 23 months of age were randomly assigned to receive two 25-µg injections of mRNA-1273; 1008 children 2 to 5 years of age and 593 children 6 to 23 months of age were randomly assigned to receive placebo. The median duration of follow-up after the second injection was 71 days in the 2-to-5-year-old cohort and 68 days in the 6-to-23-month-old cohort. Adverse events were mainly low-grade and transient, and no new safety concerns were identified. At day 57, neutralizing antibody geometric mean concentrations were 1410 (95% confidence interval [CI], 1272 to 1563) among 2-to-5-year-olds and 1781 (95% CI, 1616 to 1962) among 6-to-23-month-olds, as compared with 1391 (95% CI, 1263 to 1531) among young adults, who had received 100-µg injections of mRNA-1273, findings that met the noninferiority criteria for immune responses for both age cohorts. The estimated vaccine efficacy against Covid-19 was 36.8% (95% CI, 12.5 to 54.0) among 2-to-5-year-olds and 50.6% (95% CI, 21.4 to 68.6) among 6-to-23-month-olds, at a time when B.1.1.529 (omicron) was the predominant circulating variant. CONCLUSIONS: Two 25-µg doses of the mRNA-1273 vaccine were found to be safe in children 6 months to 5 years of age and elicited immune responses that were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Immunogenicity, Vaccine , Child , Child, Preschool , Humans , Infant , Young Adult , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Immunogenicity, Vaccine/immunology , Vaccine Efficacy , Treatment Outcome , Adolescent , Adult
7.
Nat Med ; 28(11): 2388-2397, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2050431

ABSTRACT

Updated immunization strategies are needed to address multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here we report interim results from an ongoing, open-label phase 2/3 trial evaluating the safety and immunogenicity of the bivalent Coronavirus Disease 2019 (COVID-19) vaccine candidate mRNA-1273.211, which contains equal mRNA amounts encoding the ancestral SARS-CoV-2 and Beta variant spike proteins, as 50-µg (n = 300) and 100-µg (n = 595) first booster doses administered approximately 8.7-9.7 months after the mRNA-1273 primary vaccine series ( NCT04927065 ). The primary objectives were to evaluate the safety and reactogenicity of mRNA-1273.211 and to demonstrate non-inferior antibody responses compared to the mRNA-1273 100-µg primary series. Additionally, a pre-specified immunogenicity objective was to demonstrate superior antibody responses compared to the previously authorized mRNA-1273 50-µg booster. The mRNA-1273.211 booster doses (50-µg or 100-µg) 28 days after immunization elicited higher neutralizing antibody responses against the ancestral SARS-CoV-2 and Beta variant than those elicited 28 days after the second mRNA­1273 dose of the primary series ( NCT04470427 ). Antibody responses 28 days and 180 days after the 50-µg mRNA-1273.211 booster dose were also higher than those after a 50-µg mRNA-1273 booster dose ( NCT04405076 ) against the ancestral SARS-CoV-2 and Beta, Omicron BA.1 and Delta variants, and all pre-specified immunogenicity objectives were met. The safety and reactogenicity profile of the bivalent mRNA-1273.211 booster (50-µg) was similar to the booster dose of mRNA-1273 (50-µg). Immunization with the primary series does not set a ceiling to the neutralizing antibody response, and a booster dose of the bivalent vaccine elicits a robust response with titers that are likely to be protective against COVID-19. These results indicate that bivalent booster vaccines can induce potent, durable and broad antibody responses against multiple variants, providing a new tool in response to emerging variants.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Vaccines, Combined , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
8.
N Engl J Med ; 387(14): 1279-1291, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2036976

ABSTRACT

BACKGROUND: The safety and immunogenicity of the bivalent omicron-containing mRNA-1273.214 booster vaccine are not known. METHODS: In this ongoing, phase 2-3 study, we compared the 50-µg bivalent vaccine mRNA-1273.214 (25 µg each of ancestral Wuhan-Hu-1 and omicron B.1.1.529 [BA.1] spike messenger RNAs) with the previously authorized 50-µg mRNA-1273 booster. We administered mRNA-1273.214 or mRNA-1273 as a second booster in adults who had previously received a two-dose (100-µg) primary series and first booster (50-µg) dose of mRNA-1273 (≥3 months earlier). The primary objectives were to assess the safety, reactogenicity, and immunogenicity of mRNA-1273.214 at 28 days after the booster dose. RESULTS: Interim results are presented. Sequential groups of participants received 50 µg of mRNA-1273.214 (437 participants) or mRNA-1273 (377 participants) as a second booster dose. The median time between the first and second boosters was similar for mRNA-1273.214 (136 days) and mRNA-1273 (134 days). In participants with no previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the geometric mean titers of neutralizing antibodies against the omicron BA.1 variant were 2372.4 (95% confidence interval [CI], 2070.6 to 2718.2) after receipt of the mRNA-1273.214 booster and 1473.5 (95% CI, 1270.8 to 1708.4) after receipt of the mRNA-1273 booster. In addition, 50-µg mRNA-1273.214 and 50-µg mRNA-1273 elicited geometric mean titers of 727.4 (95% CI, 632.8 to 836.1) and 492.1 (95% CI, 431.1 to 561.9), respectively, against omicron BA.4 and BA.5 (BA.4/5), and the mRNA-1273.214 booster also elicited higher binding antibody responses against multiple other variants (alpha, beta, gamma, and delta) than the mRNA-1273 booster. Safety and reactogenicity were similar with the two booster vaccines. Vaccine effectiveness was not assessed in this study; in an exploratory analysis, SARS-CoV-2 infection occurred in 11 participants after the mRNA-1273.214 booster and in 9 participants after the mRNA-1273 booster. CONCLUSIONS: The bivalent omicron-containing vaccine mRNA-1273.214 elicited neutralizing antibody responses against omicron that were superior to those with mRNA-1273, without evident safety concerns. (Funded by Moderna; ClinicalTrials.gov number, NCT04927065.).


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Vaccines, Combined , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunogenicity, Vaccine/immunology , SARS-CoV-2 , Vaccines, Combined/immunology , Vaccines, Combined/therapeutic use , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
10.
J Infect Dis ; 226(10): 1731-1742, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1886452

ABSTRACT

BACKGROUND: Messenger RNA (mRNA)-1273 vaccine demonstrated 93.2% efficacy against coronavirus disease 2019 (COVID-19) in the Coronavirus Efficacy (COVE) trial. The humoral immunogenicity results are now reported. METHODS: Participants received 2 mRNA-1273 (100 µg) or placebo injections, 28 days apart. Immune responses were evaluated in a prespecified, randomly selected per-protocol immunogenicity population (n = 272 placebo; n = 1185 mRNA-1273). Serum binding antibodies (bAbs) and neutralizing antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-spike protein were assessed at days 1, 29, and 57 by baseline SARS-CoV-2-negative (n = 1197) and SARS-CoV-2-positive (n = 260) status, age, and sex. RESULTS: SARS-CoV-2-negative vaccinees had bAb geometric mean AU/mL levels of 35 753 at day 29 that increased to 316 448 at day 57 and nAb inhibitory dilution 50% titers of 55 at day 29 that rose to 1081 at day 57. In SARS-CoV-2-positive vacinees, the first mRNA-1273 injection elicited bAb and nAb levels that were 11-fold (410 049) and 27-fold (1479) higher than in SARS-CoV-2-negative vaccinees, respectively, and were comparable to levels after 2 injections in uninfected participants. Findings were generally consistent by age and sex. CONCLUSIONS: mRNA-1273 elicited robust serologic immune responses across age, sex, and SARS-CoV-2 status, consistent with its high COVID-19 efficacy. Higher immune responses in those previously infected support a booster-type effect. Clinical Trials Registration. NCT04470427.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Immunogenicity, Vaccine , RNA, Messenger , Spike Glycoprotein, Coronavirus
11.
N Engl J Med ; 386(21): 2011-2023, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1839612

ABSTRACT

BACKGROUND: Vaccination of children to prevent coronavirus disease 2019 (Covid-19) is an urgent public health need. The safety, immunogenicity, and efficacy of the mRNA-1273 vaccine in children 6 to 11 years of age are unknown. METHODS: Part 1 of this ongoing phase 2-3 trial was open label for dose selection; part 2 was an observer-blinded, placebo-controlled expansion evaluation of the selected dose. In part 2, we randomly assigned children (6 to 11 years of age) in a 3:1 ratio to receive two injections of mRNA-1273 (50 µg each) or placebo, administered 28 days apart. The primary objectives were evaluation of the safety of the vaccine in children and the noninferiority of the immune response in these children to that in young adults (18 to 25 years of age) in a related phase 3 trial. Secondary objectives included determination of the incidences of confirmed Covid-19 and severe acute respiratory syndrome coronavirus 2 infection, regardless of symptoms. Interim analysis results are reported. RESULTS: In part 1 of the trial, 751 children received 50-µg or 100-µg injections of the mRNA-1273 vaccine, and on the basis of safety and immunogenicity results, the 50-µg dose level was selected for part 2. In part 2 of the trial, 4016 children were randomly assigned to receive two injections of mRNA-1273 (50 µg each) or placebo and were followed for a median of 82 days (interquartile range, 14 to 94) after the first injection. This dose level was associated with mainly low-grade, transient adverse events, most commonly injection-site pain, headache, and fatigue. No vaccine-related serious adverse events, multisystem inflammatory syndrome in children, myocarditis, or pericarditis were reported as of the data-cutoff date. One month after the second injection (day 57), the neutralizing antibody titer in children who received mRNA-1273 at a 50-µg level was 1610 (95% confidence interval [CI], 1457 to 1780), as compared with 1300 (95% CI, 1171 to 1443) at the 100-µg level in young adults, with serologic responses in at least 99.0% of the participants in both age groups, findings that met the prespecified noninferiority success criterion. Estimated vaccine efficacy was 88.0% (95% CI, 70.0 to 95.8) against Covid-19 occurring 14 days or more after the first injection, at a time when B.1.617.2 (delta) was the dominant circulating variant. CONCLUSIONS: Two 50-µg doses of the mRNA-1273 vaccine were found to be safe and effective in inducing immune responses and preventing Covid-19 in children 6 to 11 years of age; these responses were noninferior to those in young adults. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; KidCOVE ClinicalTrials.gov number, NCT04796896.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , 2019-nCoV Vaccine mRNA-1273/adverse effects , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/complications , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Child , Double-Blind Method , Humans , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vaccine Efficacy , Young Adult
12.
Lancet Infect Dis ; 22(3): 413-425, 2022 03.
Article in English | MEDLINE | ID: covidwho-1839423

ABSTRACT

BACKGROUND: The quadrivalent human papillomavirus (HPV) vaccine was shown to prevent infections and lesions related to HPV6, 11, 16, and 18 in a randomised, placebo-controlled study in men aged 16-26 years. We assessed the incidences of external genital warts related to HPV6 or 11, and external genital lesions and anal dysplasia related to HPV6, 11, 16, or 18, over 10 years of follow-up. METHODS: The 3-year base study was an international, multicentre, double-blind, randomised, placebo-controlled trial done at 71 sites in 18 countries. Eligible participants were heterosexual men (aged 16-23 years) or men who have sex with men (MSM; aged 16-26 years). Men who had clinically detectable anogenital warts or genital lesions at screening that were suggestive of infection with non-HPV sexually transmitted diseases, or who had a history of such findings, were excluded. Eligible participants were randomly assigned (1:1) to receive three doses of either quadrivalent HPV vaccine or placebo on day 1, month 2, and month 6, administered as a 0·5-mL injection into the deltoid muscle. The 7-year, open-label, long-term follow-up extension study was done at 46 centres in 16 countries. Participants who received one or more doses of the quadrivalent HPV vaccine in the base study were eligible for enrolment into the long-term follow-up study (early vaccination group). Placebo recipients were offered the three-dose quadrivalent HPV vaccine at the end of the base study; those who received one or more quadrivalent HPV vaccine doses were eligible for enrolment into the long-term follow-up study (catch-up vaccination group). The primary efficacy endpoints were the incidence of external genital warts related to HPV6 or 11 and the incidence of external genital lesions related to HPV6, 11, 16, or 18 in all participants and the incidence of anal intraepithelial neoplasia (including anal warts and flat lesions) or anal cancer related to HPV6, 11, 16, or 18 in MSM only. The primary efficacy analysis was done in the per-protocol population for the early vaccination group, which included participants who received all three vaccine doses, were seronegative at day 1 and PCR-negative from day 1 through month 7 of the base study for the HPV type being analysed, had no protocol violations that could affect evaluation of vaccine efficacy, and had attended at least one visit during the long-term follow-up study. For the catch-up vaccination group, efficacy was assessed in the modified intention-to-treat population, which included participants who had received at least one vaccine dose, were seronegative and PCR-negative for HPV types analysed from day 1 of the base study to the final follow-up visit before receiving the quadrivalent HPV vaccine, and had at least one long-term follow-up visit. Safety was assessed in all randomised participants who received at least one vaccine dose. This study is registered with ClinicalTrials.gov, NCT00090285. FINDINGS: Between Aug 10, 2010, and April 3, 2017, 1803 participants were enrolled in the long-term follow-up study, of whom 936 (827 heterosexual men and 109 MSM) were included in the early vaccination group and 867 (739 heterosexual men and 128 MSM) were included in the catch-up vaccination group. Participants in the early vaccination group were followed up for a median of 9·5 years (range 0·1-11·5) after receiving the third dose of the quadrivalent HPV vaccine, and participants in the catch-up vaccination group were followed up for a median of 4·7 years (0·0-6·6) after receiving the third dose. In early vaccine group participants during long-term follow-up compared with the placebo group in the base study, the incidence per 10 000 person-years of external genital warts related to HPV6 or 11 was 0·0 (95% CI 0·0-8·7) versus 137·3 (83·9-212·1), of external genital lesions related to HPV6, 11, 16, or 18 was 0·0 (0·0-7·7) versus 140·4 (89·0-210·7), and of anal intraepithelial neoplasia or anal cancer related to HPV6, 11, 16, or 18 in MSM only was 20·5 (0·5-114·4) versus 906·2 (553·5-1399·5). Compared with during the base study (ie, before quadrivalent HPV vaccine administration), during the long-term follow-up period, participants in the catch-up vaccination group had no new reported cases of external genital warts related to HPV6 or 11 (149·6 cases per 10 000 person-years [95% CI 101·6-212·3] vs 0 cases per 10 000 person-years [0·0-13·5]) or external genital lesions related to HPV6, 11, 16, or 18 (155·1 cases per 10 000 person-years [108·0-215·7] vs 0 cases per 10 000 person-years [0·0-10·2]), and a lower incidence of anal intraepithelial neoplasia or anal cancer related to HPV6, 11, 16, or 18 (886·0 cases per 10 000 person-years [583·9-1289·1] vs 101·3 cases per 10 000 person-years [32·9-236·3]). No vaccine-related serious adverse events were reported. INTERPRETATION: The quadrivalent HPV vaccine provides durable protection against anogenital disease related to HPV6, 11, 16, and 18. The results support quadrivalent HPV vaccination in men, including catch-up vaccination. FUNDING: Merck Sharp & Dohme.


Subject(s)
Anus Neoplasms , Condylomata Acuminata , Papillomavirus Infections , Papillomavirus Vaccines , Sexual and Gender Minorities , Condylomata Acuminata/epidemiology , Condylomata Acuminata/prevention & control , Double-Blind Method , Follow-Up Studies , Homosexuality, Male , Humans , Immunogenicity, Vaccine , Male , Papillomaviridae , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control
13.
Nat Med ; 28(5): 1042-1049, 2022 05.
Article in English | MEDLINE | ID: covidwho-1730305

ABSTRACT

Rising breakthrough infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals have raised concerns for the need for a booster vaccine dose to combat waning antibody levels and new variants. Here we report the results of the open-label, non-randomized part B of a phase 2 trial in which we evaluated the safety and immunogenicity of a booster injection of 50 µg of the coronavirus disease 2019 (COVID-19) vaccine mRNA-1273 in 344 adult participants immunized 6-8 months earlier with a primary series of two doses of 50 µg or 100 µg of mRNA-1273 ( NCT04405076 ). Neutralizing antibody (nAb) titers against wild-type SARS-CoV-2 at 1 month after the booster were 1.7-fold (95% confidence interval (CI): 1.5, 1.9) higher than those at 28 days after the second injection of the primary series, which met the pre-specified non-inferiority criterion (primary immunogenicity objective) and might indicate a memory B cell response. The nAb titers against the Delta variant (B.1.617.2) (exploratory objective) at 1 month after the booster were 2.1-fold (95% CI: 1.8, 2.4) higher than those at 28 days after the second injection of the primary series. The seroresponse rate (95% CI (four-fold rise from baseline)) was 100% (98.7, 100.0) at 28 days after the booster compared to 98.3% (96.0, 99.4) after the primary series. The higher antibody titers at 28 days after the booster dose compared to 28 days after the second dose in the phase 3 COVE study were also observed in two assays for anti-spike IgG antibody measured by ELISA and by Meso Scale Discovery (MSD) Multiplex. The frequency of solicited local and systemic adverse reactions after the booster dose was similar to that after the second dose in the primary two-dose series of mRNA-1273 (50 µg or 100 µg); no new signals were observed in the unsolicited adverse events; and no serious adverse events were reported in the 1-month follow-up period. These results show that a booster injection of mRNA-1273 more than 6 months after completing the primary two-dose series is safe and elicited nAb titers that were statistically significantly higher than the peak titers detected after the primary vaccination series, suggesting that a booster dose of mRNA-1273 might result in increased vaccine effectiveness against infection and disease caused by SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Immunogenicity, Vaccine
16.
J Family Med Prim Care ; 10(1): 561-563, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1239063

ABSTRACT

Owing to COVID-19 pandemic, wearing personal protective equipment (PPE) and N95 mask inside an operation theatre has become a common practice. Subjective symptoms of suffocation, headache, dizziness, and lack of concentration while on PPE may at times become significant enough requiring oxygen therapy, removal of mask, or even doffing of PPE, which may increase the risk of being infected and at the same time compromising patient care. The reason behind such subjective symptoms may be multifactorial. We report here a 52-years-old anesthetist with a high body mass index, wearing PPE for a prolonged duration inside an operation theatre during a high-risk surgery encountered a similar episode. Being the lone anesthetist, he decided to oxygenate himself in an innovative way, thus, avoiding doffing and any undesirable event. With pandemic expanding rapidly such scenarios may be encountered often, identifying factors predicting such events and finding methods of oxygenation while wearing PPE may be extremely beneficial.

SELECTION OF CITATIONS
SEARCH DETAIL